Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors

نویسندگان

  • Michael R McKeown
  • Daniel L Shaw
  • Harry Fu
  • Shuai Liu
  • Xiang Xu
  • Jason J Marineau
  • Yibo Huang
  • Xiaofeng Zhang
  • Dennis L Buckley
  • Asha Kadam
  • Zijuan Zhang
  • Stephen C Blacklow
  • Jun Qi
  • Wei Zhang
  • James E Bradner
چکیده

BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC50. Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a Kd of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into the key interactions of bromodomain inhibitors based on molecular docking, interaction fingerprinting, molecular dynamics and binding free energy calculation.

The bromodomain is a key protein-protein interaction module that specifically reads the acetylation marks of histones in epigenetic regulation. Currently, lots of inhibitors targeting the bromodomain have been reported as therapeutic agents. To better understand the interaction mechanism of bromodomain inhibitors, 20 diverse bromodomain inhibitors were studied using a combination of computation...

متن کامل

One-pot Synthesis of Amidoalkyl Naphthol Derivatives as Potential Nucleoside Antibiotics and HIV Protease Inhibitors using Nano-SnO2 as an Efficient Catalyst

An  efficient  three-component  one-pot  synthesis  of 1-amidoalkyl-2-naphthols  from  2-naphthol, aldehydes, and acetamide using nano-SnO2as catalyst is described. The reactions were carried out at 80oC under water-solvent media. The structures of the compounds were characterized by IR, 1HNMR, 13C-NMR,  and  Mass  spectra  and  by  elemental  analysis.  The  advantages  of  the  effective meth...

متن کامل

Enabling Large-Scale Design, Synthesis and Validation of Small Molecule Protein-Protein Antagonists

Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screen...

متن کامل

Synthesis of Some Spiro Indeno[1,2-b]pyrido[2,3-d]Pyrimidine-5,3′- Indolines as New Urease Inhibitors

New series of spiroindeno[1,2-b]pyrido[2,3-d]pyrimidine-5,3′-indolines as new urease inhibitors were synthesized by the catalytic procedure in high yield and short reaction time. In this method, biacidic carbon was prepared as a novel heterogeneous acid and was subsequently used as an efficient catalyst in this synthesis. The inhibitory activities of synthesized compounds were tested against Ja...

متن کامل

Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands

The bromodomain protein module, which binds to acetylated lysine, is emerging as an important epigenetic therapeutic target. We report the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency. X-ray crystal structures of the most potent compounds reveal ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014